

IGBT

FGL40N150D

General Description

Fairchild's Insulated Gate Bipolar Transistor (IGBT) provides low conduction and switching losses. The FGL40N150D is designed for induction heating applications.

Features

- · High speed switching
- Low saturation voltage : V_{CE(sat)} = 3.5 V @ I_C = 40A
- · High input impedance
- · Built-in fast recovery diode

Applications

Home appliances, induction heaters, IH JAR, and microwave ovens.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Description		FGL40N150D	Units
V _{CES}	Collector-Emitter Voltage		1500	V
V _{GES}	Gate-Emitter Voltage		± 25	V
	Collector Current	@ $T_C = 25^{\circ}C$	40	Α
IC	Collector Current	@ T _C = 100°C	20	А
I _{CM (1)}	Pulsed Collector Current		120	Α
I _F	Diode Continuous Forward Current	@ T _C = 100°C	10	Α
I _{FM}	Diode Maximum Forward Current		100	А
P_{D}	Maximum Power Dissipation	@ T _C = 25°C	200	W
	Maximum Power Dissipation	@ T _C = 100°C	80	W
T _J	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
T _L	Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 Second	ds	300	°C

Notes:(1) Repetitive rating: Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
R _{θJC} (IGBT)	Thermal Resistance, Junction-to-Case		0.625	°C/W
$R_{\theta JC}(DIODE)$	Thermal Resistance, Junction-to-Case		0.83	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		25	°C/W

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Cha	racteristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	$V_{GE} = 0V$, $I_{C} = 3mA$	1500			V
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$			3.0	mΑ
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			± 100	nΑ
On Cha	racteristics					
V _{GE(th)}	G-E Threshold Voltage	$I_C = 40 \text{mA}, V_{CE} = V_{GE}$	3.5	5.0	7.5	V
V _{CE(sat)}	Collector to Emitter	$I_C = 40A, V_{GF} = 15V$	2.5	3.5	4.5	V
*CE(sat)	Saturation Voltage	10 = 1071, 1GE = 101	2.0	0.0	1.0	•
	c Characteristics	T		2450		~F
C _{ies}	Input Capacitance	V _{CF} = 30V V _{GF} = 0V,		2450		pF
C _{ies}	Input Capacitance Output Capacitance	V _{CE} = 30V, V _{GE} = 0V, f = 1MHz		220		pF
C _{ies}	Input Capacitance					
C _{ies} C _{oes} C _{res}	Input Capacitance Output Capacitance			220		pF
C _{ies} C _{oes} C _{res} Switching	Input Capacitance Output Capacitance Reverse Transfer Capacitance	f = 1MHz		220		pF
C _{ies} C _{oes} C _{res} Switchin	Input Capacitance Output Capacitance Reverse Transfer Capacitance ng Characteristics	f = 1MHz V _{CC} = 600 V, I _C = 40A,		220 75		pF pF
$egin{array}{l} C_{ies} \ C_{oes} \ C_{res} \ \end{array}$	Input Capacitance Output Capacitance Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time	$f = 1MHz$ $V_{CC} = 600 \text{ V, } I_{C} = 40A,$ $R_{G} = 51\Omega, V_{GE} = 15V,$		220 75	200	pF pF
$rac{C_{ies}}{C_{oes}}$ $rac{C_{oes}}{C_{res}}$ Switching to the system of the sys	Input Capacitance Output Capacitance Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Rise Time	f = 1MHz V _{CC} = 600 V, I _C = 40A,		220 75 100 350	200 700	pF pF pF
C _{ies} C _{oes} Cres Switchin t _{d(on)} t _r t _{d(off)} t _f Q _q	Input Capacitance Output Capacitance Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time	$\begin{aligned} & = \text{IMHz} \\ & = \text{V}_{\text{CC}} = 600 \text{ V}, \text{I}_{\text{C}} = 40\text{A}, \\ & = \text{R}_{\text{G}} = 51\Omega, \text{V}_{\text{GE}} = 15\text{V}, \\ & = \text{ResistiveLoad}, \text{T}_{\text{C}} = 25^{\circ}\text{C} \end{aligned}$		220 75 100 350 200	200 700 400	pF pF ns ns
C _{ies} C _{oes} C _{res}	Input Capacitance Output Capacitance Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$f = 1MHz$ $V_{CC} = 600 \text{ V, } I_{C} = 40A,$ $R_{G} = 51\Omega, V_{GE} = 15V,$		220 75 100 350 200 100	200 700 400 300	pF pF ns ns

Electrical Characteristics of DIODE $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V _{FM}	Diode Forward Voltage	I _F = 10A		1.3	1.8	V
t _{rr}	Diode Reverse Recovery Time	$I_F = 10A$, di/dt = 200A/us		170	300	ns

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Collector to Emitter Saturation Voltage vs. Case Temperature

Fig 4. Typical Capacitance vs.

Collector to Emitter Voltage

Fig 5. Saturation Voltage vs. V_{GE}

Fig 6. Saturation Voltage vs. V_{GE}

©2002 Fairchild Semiconductor Corporation

Fig 7. Turn-Off Characteristics vs. Collector Current

Fig 8. Turn-On Characteristics vs. Collector Current

Fig 9. Switching Loss vs. Collector Current

Fig 10. Turn-Off Characteristics vs. Gate Resistance

Fig 11. Turn-On Characteristics vs.
Gate Resistance

Fig 12. Switching Loss vs. Gate Resistance

©2002 Fairchild Semiconductor Corporation

Fig 13. Gate Charge Characteristics

Fig 14. SOA Characteristics

Fig 15. Typical T_{rr} vs. di/dt

Fig 16. Typical T_{rr} vs. Forward Current

Fig 17. Reverse Current vs. Reverse Voltage

Fig 18. Typical Forward Voltage Drop vs. Forward Current

©2002 Fairchild Semiconductor Corporation

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	MICROWIRE™	SLIENT SWITCHER®	UHC™
Bottomless™	FASTr™	OPTOLOGIC™	SMART START™	UltraFET [®]
CoolFET™	FRFET™	OPTOPLANAR™	SPM™	VCX^{TM}
$CROSSVOLT^{rM}$	GlobalOptoisolator™	PACMAN™	STAR*POWER™	
DenseTrench™	GTO™	POP™	Stealth™	
DOME™	HiSeC™	Power247™	SuperSOT™-3	
EcoSPARK™	I^2C^{TM}	PowerTrench [®]	SuperSOT™-6	
E ² CMOS™	ISOPLANAR™	QFET™	SuperSOT™-8	
EnSigna™	LittleFET™	QS™	SyncFET™	
FACT™	MicroFET™	QT Optoelectronics™	TinyLogic™	
FACT Quiet Series™	MicroPak™	Quiet Series™	TruTranslation™	

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2002 Fairchild Semiconductor Corporation Rev. H5

technical support

my Fairchild

company

- High Speed Switching
 - Low saturation voltage : $V_{CE(sat)} = 3.5$

 $V @ I_C = 40A$

- High input impedance
- Built-in fast recovery diode

back to top

Applications

Home appliances, induction heaters, IH JAR, and microwave ovens

back to top

Product status/pricing/packaging

Product	Product status	Pricing*	Package type	Leads	Packing method
FGL40N150DTU	Full Production	\$12.27	<u>TO-264</u>	3	RAIL

^{* 1,000} piece Budgetary Pricing

back to top
Home Find products Technical information Buy products Support Company Contact us Site index Privacy policy

© Copyright 2002 Fairchild Semiconductor